Composite Model of Gauge Bosons in Electroweak Interactions

Katsumi Sugita,¹ Yoshiwo Okamoto,² and Matsuo Sekine³

Received January 10, 1997

We consider a simple Lagrangian which is constructed by only the preon and antipreon fields. By introducing the auxiliary fields ϕ_{μ} , ϕ_{μ}^{\dagger} , and ϕ_{μ} , it is shown that ϕ_{μ} , ϕ_{μ}^{\dagger} , and ϕ_{μ} correspond to the electroweak gauge bosons W_{μ}^{+} , W_{μ}^{-} , and $W_u³$, respectively, which are composite particles of preons and antipreons.

I. INTRODUCTION

 \mathbf{r}

We have considered a preon model of quarks and leptons in which preons and antipreons construct the SU(2) doublet (Sugita *et aL,* 1991, 1992a,b, 1994a,b; Okamoto *et al.,* 1992a, b, 1995). It was shown that *CP* is violated in only the first family of quarks and leptons.

To account for *CP* violation in the first family, we have considered a preon $\langle\langle a \rangle\rangle$ with spin 1/2 and electric charge 1/2, a preon $\langle\langle l \rangle\rangle$ with spin 1/2 and electric charge -1 , and a preon $\langle \langle q_i \rangle \rangle$ with spin 1/2 and electric charge $-1/3$ having colors of $i = R$, G, B. Then the first family of leptons and quarks is written as

$$
\begin{pmatrix} v_L \\ e_L \end{pmatrix} = \begin{pmatrix} a_L \\ a_L^{cp} \end{pmatrix} a_R l_L, \qquad e_R = (a_R^{cp} a_R l_R)
$$

$$
\begin{pmatrix} u_{iL} \\ d_{iL} \end{pmatrix} = \begin{pmatrix} a_L \\ a_L^{cp} \end{pmatrix} a_R q_{iL}, \qquad u_{iR} = (a_R a_R q_{iR}), \qquad d_{iR} = (a_R^{cp} a_R q_{iR})
$$

¹Department of Electronics and Information Engineering, Sun Techno College, 1999-5, Ryuo-cho, Nakakoma-gun, Yamanashi, Japan.

²Department of Electrical Engineering, Chiba Institute of Technology, 2-17-1, Tsudanuma, Narashino-shi, Chiba, Japan.

³Department of Applied Electronics, Tokyo Institute of Technology, 4259, Nagatsuta, Midori-ku, Yokohama, Japan.

where the subscripts L and R denote left- and right-handed particles, respectively, and a_r^{cp} means the left-handed particle operated on by charge conjugation C and then parity transformation P , namely

$$
a_L^{cp} \equiv \gamma^0 C \gamma^0 \frac{1}{2} (1 - \gamma_5) a^* \tag{1}
$$

From this model, we can account for *CP* violation. The Lagrangian describing the electroweak interactions is written as

$$
L = \overline{\chi}\gamma^{\mu}\left(i\partial_{\mu} - \frac{g}{2}\tau \cdot W_{\mu}\right)\chi\tag{2}
$$

where χ is the weak-isospin doublet, g is the coupling constant, W_{μ} are three gauge fields of $SU(2)_L$, and $\tau/2$ are generators of $SU(2)_L$.

Now consider the following weak isospin doublet:

$$
\chi = (a_L A a_L^{cp})^T \tag{3}
$$

where the superscript T means transposed, and A is a matrix. To satisfy the $SU(2)$, gauge symmetry, the matrix A must satisfy the condition (Sugita *et al.,* 1994a)

$$
ACA^*C = -I_4 \tag{4}
$$

where I_4 is a 4 \times 4 unit matrix. If $A = M\gamma^0$ and M is a Lorentz scalar, equation (2) is invariant under the Lorentz transformation. Then using M , we can rewrite equation (4) as

$$
\tilde{M}M^* = -I_4 \tag{5}
$$

where \tilde{M} means that γ_5 , γ^{μ} , and $\sigma^{\mu\nu}$ are replaced by $-\gamma_5$, $-\gamma^{\mu,*}$, and $-\sigma^{\mu\nu,*}$, respectively, in M. Here $\sigma^{\mu\nu}$ is defined as $(i/2)[\gamma^{\mu}, \gamma^{\nu}]$. If the matrix M satisfies (5) , the $SU(2)$ and the Lorentz invariances hold. For example, we can choose $exp(id_{\mu}\gamma^{\mu}]\gamma_{5}$, $exp(id_{\mu\nu}\gamma_{5}\sigma^{\mu\nu}]\gamma_{5}$, and $exp(it_{\kappa\mu\nu}\gamma_{5}\sigma^{\kappa\mu}\gamma^{\nu}]\gamma_{5}$ as the matrix M. Here d_{μ} is a real vector in Minkowski space and independent of space.

In a previous paper (Okamoto *et al.,* 1995), as an example, we considered the matrix

$$
A = M\gamma^{0}
$$

= $\exp\left[id_{\mu}\gamma^{\mu}\right]\gamma_{5}\gamma^{0}$ (6)

and showed direct \mathbb{CP} violation in β -decay of the nucleon satisfying both the $SU(2)$ and Lorentz invariances. That is, Hermite conjugation of the preon tensor $T_{\mu\nu}^{(pren)\dagger}$ is written as

$$
T_{\mu\nu}^{\langle \text{green}\rangle\dagger} = \frac{1}{2}d^{-2}\sin^2 d \operatorname{Tr}(K^\dagger d_\sigma \gamma^{\sigma\dagger} \gamma^0 \gamma_\mu K^\prime \gamma_\nu d_\rho \gamma^\rho \gamma^0 \frac{1}{2}(1-\gamma_5)) \tag{7}
$$

Electroweak Gauge Bosons 1311

On the other hand, $T^{(pren)/c\rho}_{\mu\nu}$ is written as

$$
T_{\mu\nu}^{(\text{green})cp} = \frac{1}{2}d^{-2}\sin^2 d \operatorname{Tr}(k^\dagger d_\sigma \gamma^\sigma \gamma^\sigma \gamma^\mu \mu k^\prime \gamma_\nu d_\rho \gamma^{\rho \dagger} \gamma^\sigma \frac{1}{2}(1 - \gamma_5)) \tag{8}
$$

The difference between (7) and (8) is that the dagger \dagger operates on γ_{σ} and γ_{p} . Thus, we obtain $T_{\mu\nu}^{(pren)\dagger} \neq T_{\mu\nu}^{(pren)\ncap}$ and we can show direct *CP* violation in β -decay of the nucleon satisfying both the $SU(2)$ and Lorentz invariances.

Thus, based on the preon model, we could explain *CP* violation in the first family of quarks and leptons by considering β -decay of the nucleon. In the following, we consider the gauge bosons composed of preons and antipreons by introducing auxiliary fields.

2. COMPOSITE MODEL OF GAUGE BOSONS

The preon a_L and antipreon a_L^{cp} contribute to the $SU(2)$ doublet in electroweak interactions. Therefore, the gauge bosons W^+_{μ} , W^-_{μ} , and W^3_{μ} derived from the $SU(2)$ gauge symmetry are constructed from the preon a_L and antipreon a_r^{cp} .

Consider the simple Lagrangian describing the preon fields,

$$
L = L_{\text{free}} + L_{\text{int}} \tag{9}
$$

where

$$
L_{\text{free}} = \overline{a_L} \gamma^{\mu} i \partial_{\mu} a_L + \overline{a_L^{cp}} \gamma^{\mu} i \partial_{\mu} a_L^{cp}
$$

$$
L_{\text{int}} = \lambda \{ (\overline{a_L} \gamma^{\mu} a_L) (\overline{a_L^{cp}} \gamma_{\mu} a_L^{cp}) + (\overline{a_L^{cp}} \gamma^{\mu} a_L) (\overline{a_L} \gamma_{\mu} a_L^{cp}) \}
$$
(10)

Here λ is a coupling constant of four-Fermi interactions. This Lagrangian is fundamental, since it is constructed from the preon field a_L and antipreon field a_r^{cp} . For simplicity, we consider $A = 1$ in (3). The following calculation is valid for the case including A. The generating functional Z without external fields is represented by the path integral by

$$
Z = \int Da^{cp} Da \exp i \int d^4x \left[L_{\text{free}} + L_{\text{inl}} \right] \tag{11}
$$

Introducing the auxiliary fields ϕ_{μ} , ϕ_{μ}^{\dagger} , ϕ_{μ} , and ϕ_{μ}^{cp} , we rewrite the term L_{int} in equation (11) as

$$
\exp i \int d^4x L_{int}
$$
\n
$$
= \frac{1}{K} \int D\phi^{\dagger} D\phi \exp i \int d^4x \left[-m^2 \phi_{\mu}^{\dagger} \phi^{\mu} \right]
$$
\n
$$
\times \frac{1}{N} \int D\phi^{cp} D\phi \exp i \int d^4x \left[-\mu^2 \phi_{\mu}^{cp} \phi^{\mu} \right]
$$
\n
$$
\times \exp i \int d^4x \lambda \left\{ (\overline{a_L} \gamma^{\mu} a_L) (\overline{a_L^{cp}} \gamma_{\mu} a_L^{cp}) + (\overline{a_L^{cp}} \gamma^{\mu} a_L) (\overline{a_L} \gamma_{\mu} a_L^{cp}) \right\} (12)
$$

where

$$
K \equiv \int D\phi^{\dagger} D\phi \exp i \int d^{4}x \left[-m^{2}\phi_{\mu}^{\dagger}\phi^{\mu} \right]
$$

$$
N \equiv \int D\phi^{cp} D\phi \exp i \int d^{4}x \left[-\mu^{2}\phi_{\mu}^{cp}\phi^{\mu} \right]
$$
 (13)

Furthermore, we carry out the transformation of integral variables in the form

$$
\phi'_{\mu} = \phi_{\mu} - \frac{\sqrt{\lambda}}{m} (\overline{a_{L}^{cp}} \gamma_{\mu} a_{L}), \qquad \phi'^{\dagger}_{\mu} = \phi^{\dagger}_{\mu} - \frac{\sqrt{\lambda}}{m} (\overline{a_{L}} \gamma_{\mu} a_{L}^{cp})
$$
\n
$$
\phi'_{\mu} = \phi_{\mu} - \frac{\sqrt{\lambda}}{\mu} (\overline{a_{L}} \gamma_{\mu} a_{L}), \qquad \phi'^{cp}_{\mu} = \phi^{cp}_{\mu} - \frac{\sqrt{\lambda}}{\mu} (\overline{a_{L}^{cp}} \gamma_{\mu} a_{L}^{cp})
$$
\n(14)

Here the path integral measure is invariant under this transformation. Thus **we obtain**

$$
\exp i \int d^4x \, L_{\text{int}} = \frac{1}{K \cdot N} \int D\phi^{\dagger} D\phi \, D\phi^{cp} \, D\phi \, \exp i \int d^4x \, L_{\text{Aint}} \quad (15)
$$

where

$$
L_{Aint} = -m^2 \left\{ \phi_{\mu}^{\dagger} - \frac{\sqrt{\lambda}}{m} \left(\overline{a}_{L} \gamma_{\mu} a_{L}^{cp} \right) \right\} \left\{ \phi^{\mu} - \frac{\sqrt{\lambda}}{m} \left(\overline{a}_{L}^{cp} \gamma^{\mu} a_{L} \right) \right\} - \mu^2 \left\{ \phi_{\mu}^{cp} - \frac{\sqrt{\lambda}}{\mu} \left(\overline{a}_{L}^{cp} \gamma_{\mu} a_{L}^{cp} \right) \right\} \left\{ \phi^{\mu} - \frac{\sqrt{\lambda}}{\mu} \left(\overline{a}_{L} \gamma^{\mu} a_{L} \right) \right\} + \lambda \left\{ \left(\overline{a}_{L} \gamma^{\mu} a_{L} \right) \left(\overline{a}_{L}^{cp} \gamma_{\mu} a_{L}^{cp} \right) + \left(\overline{a}_{L}^{cp} \gamma^{\mu} a_{L} \right) \left(\overline{a}_{L} \gamma_{\mu} a_{L}^{cp} \right) \right\} = -m^2 \phi_{\mu}^{\dagger} \phi^{\mu} - \mu^2 \phi_{\mu}^{cp} \phi^{\mu} + m \sqrt{\lambda} \left\{ \left(\overline{a}_{L} \gamma_{\mu} a_{L}^{cp} \right) \phi^{\mu} + \phi_{\mu}^{\dagger} \left(\overline{a}_{L}^{cp} \gamma^{\mu} a_{L} \right) \right\} \quad (16) + \mu \sqrt{\lambda} \left\{ \left(\overline{a}_{L}^{cp} \gamma_{\mu} a_{L}^{cp} \right) \phi^{\mu} + \phi_{\mu}^{cp} \left(\overline{a}_{L} \gamma^{\mu} a_{L} \right) \right\}
$$

From the above, the generating functional is written as

$$
Z = \frac{1}{K \cdot N} \int Da^{cp} Da D\phi^{\dagger} D\phi D\phi^{cp} D\phi \exp i \int d^4x L_A \qquad (17)
$$

where the Lagrangian *LA* **includes all auxiliary fields and is written as**

$$
L_{A} = \overline{a_{L}} \gamma^{\mu} i \partial_{\mu} a_{L} + \overline{a_{L}^{cp}} \gamma^{\mu} i \partial_{\mu} a_{L}^{cp} - m^{2} \phi_{\mu}^{\dagger} \phi^{\mu} - \mu^{2} \phi_{\mu}^{cp} \phi^{\mu} + m \sqrt{\lambda} \{ (\overline{a_{L}} \gamma_{\mu} a_{L}^{cp}) \phi^{\mu} + \phi_{\mu}^{\dagger} (\overline{a_{L}^{cp}} \gamma^{\mu} a_{L}) \} + \mu \sqrt{\lambda} \{ (\overline{a_{L}^{cp}} \gamma_{\mu} a_{L}^{cp}) \phi^{\mu} + \phi_{\mu}^{cp} (\overline{a_{L}} \gamma^{\mu}{}_{L}) \}
$$
(18)

Electroweak **Gauge Bosons** 1313

From this, we average each auxiliary field. Thus we obtain $\langle \phi_{\mu} \rangle$ as

$$
\langle \phi_{\mu} \rangle = \frac{1}{K \cdot N} \int Da^{cp} Da D\phi^{\dagger} D\phi D\phi^{cp} D\phi \phi_{\mu} \exp i \int d^{4}x L_{A}
$$

\n
$$
= \frac{1}{K \cdot N} \int Da^{cp} Da D\phi^{\dagger} D\phi^{\prime} D\phi^{\prime cp} D\phi^{\prime} \Big\{ \phi_{\mu}^{\prime} + \frac{\sqrt{\lambda}}{m} (\overline{a}_{L}^{cp} \gamma^{\mu} a_{L}) \Big\}
$$

\n
$$
\times \exp i \int d^{4}x L_{A}
$$

\n
$$
= \frac{1}{K \cdot N} \int Da^{cp} Da D\phi^{\dagger} D\phi^{\prime} D\phi^{\prime cp} D\phi^{\prime}
$$

\n
$$
\times \exp \Big[i \int d^{4}x (-m^{2} \phi_{\mu}^{\prime \dagger} \phi^{\prime \mu} - \mu^{2} \phi_{\mu}^{\prime cp} \phi^{\prime \mu}) \Big]
$$

\n
$$
\times \frac{\sqrt{\lambda}}{m} (\overline{a}_{L}^{cp} \gamma_{\mu} a_{L}) \exp \Big[i \int d^{4}x (L_{\text{free}} + L_{\text{int}}) \Big]
$$

\n
$$
= \frac{\sqrt{\lambda}}{m} \int Da^{cp} Da (\overline{a}_{L}^{cp} \gamma_{\mu} a_{L}) \exp i \int d^{4}x [L_{\text{free}} + L_{\text{int}}]
$$

\n
$$
= \frac{\sqrt{\lambda}}{m} \langle (\overline{a}_{L}^{cp} \gamma_{\mu} a_{L}) \rangle
$$
 (19)

Similarly, we obtain

$$
\langle \phi_{\mu}^{\dagger} \rangle = \frac{\sqrt{\lambda}}{m} \langle (\overline{a_{L}} \gamma_{\mu} a_{L}^{cp}) \rangle \tag{20}
$$

$$
\langle \varphi_{\mu} \rangle = \frac{\sqrt{\lambda}}{\mu} \langle (\overline{a_L} \gamma_{\mu} a_L) \rangle \tag{21}
$$

$$
\langle \varphi_{\mu}^{cp} \rangle = \frac{\sqrt{\lambda}}{\mu} \langle (\overline{a_{L}^{cp}} \gamma_{\mu} a_{L}^{cp}) \rangle \tag{22}
$$

Thus, we can see that each auxiliary field is a composite field of preons. Now, we shall examine the interaction term in the Lagrangian *LA.* First, the term $m\sqrt{\lambda}(\overline{a_L}\gamma^\mu a_L^{cp})\phi_\mu$ is interpreted as the interaction term describing the phenomenon in which the preon a_f^{cp} absorbs the auxiliary vector field ϕ_μ at the coupling constant $m\sqrt{\lambda}$ and changes to the preon a_L . Thus, ϕ_μ corresponds to a charged gauge boson W^+_μ in the preon model. Similarly, ϕ^+_μ corresponds to a charged gauge boson W_{μ} . Next, the term $\mu \sqrt{\lambda} (\overline{a_f^{cp}} \gamma^{\mu} a_f^{cp}) \varphi_{\mu}$ means that the preon a_L^{cp} absorbs the auxiliary vector field φ_μ at a coupling constant

1314 Sugita, Okamoto, and Sekine

 $\mu\sqrt{\lambda}$. Thus, φ_{μ} corresponds to a neutral gauge boson W^3_{μ} in the preon model. From the definition, we obtain $\varphi_{\mu}^{cp} = -\varphi^{\mu}$. Thus, φ_{μ}^{cp} corresponds to a neutral gauge boson $-W^{3\mu}$.

Finally, it is concluded that the auxiliary vector fields ϕ_{μ} , ϕ_{μ}^{\dagger} , and ϕ_{μ} representing the composite preon field correspond to the gauge bosons W^+_{μ} , W^-_{μ} , and W^3_{μ} , respectively, in electroweak interactions. This is summarized as follows:

$$
\langle W_{\mu}^{+} \rangle = \frac{\sqrt{\lambda}}{m} \langle \langle \overline{a_{L}^{cp}} \gamma_{\mu} a_{L} \rangle \rangle \tag{23}
$$

$$
\langle W_{\mu}^{-} \rangle = \frac{\sqrt{\lambda}}{m} \langle (\overline{a_{L}} \gamma_{\mu} a_{L}^{cp}) \rangle
$$
 (24)

$$
\langle W_{\mu}^3 \rangle = \frac{\sqrt{\lambda}}{\mu} \langle (\overline{a_L} \gamma_{\mu} a_L) \rangle
$$
 (25)

3. SU(2) GAUGE SYMMETRY

In the following, we shall show that the term L_{A-M} minus the mass term in the Lagrangian L_A has exactly the $SU(2)$ gauge symmetry. The Lagrangian L_{A-M} is written as

$$
L_{A-M} = \overline{a_L} \gamma^{\mu} i \partial_{\mu} a_L + \overline{a_L^c} \gamma^{\mu} i \partial_{\mu} a_L^c
$$

+ $m \sqrt{\lambda} \{ (\overline{a_L} \gamma_{\mu} a_L^c) \phi^{\mu} + \phi_{\mu}^{\dagger} (\overline{a_L^c} \gamma^{\mu} a_L) \}$
+ $\mu \sqrt{\lambda} \{ (\overline{a_L^c} \gamma_{\mu} a_L^c) \phi^{\mu} + \phi_{\mu}^c (\overline{a_L} \gamma^{\mu} a_L) \}$
= $\overline{a_L} \gamma^{\mu} i \partial_{\mu} a_L + \overline{a_L^c} \gamma^{\mu} i \partial_{\mu} a_L^c$
+ $m \sqrt{\lambda} \{ (\overline{a_L} \gamma_{\mu} a_L^c) W^{+\mu} + W_{\mu} (\overline{a_L^c} \gamma^{\mu} a_L) \}$
+ $\mu \sqrt{\lambda} \{ (\overline{a_L^c} \gamma_{\mu} a_L^c) W^{3\mu} - W^{3\mu} (\overline{a_L} \gamma_{\mu} a_L) \}$ (26)

Here, replacing $-W^{\pm \mu}$ by $W^{\pm \mu}$ and putting

$$
m\sqrt{\lambda} = \frac{g}{\sqrt{2}}, \qquad \mu\sqrt{\lambda} = \frac{g}{2} \tag{27}
$$

we obtain

$$
L_{A-M} = \overline{a_L} \gamma^{\mu} i \partial_{\mu} a_L + \overline{a_L^{\epsilon p}} \gamma^{\mu} i \partial_{\mu} a_L^{\epsilon p}
$$

- $\frac{g}{2} \{ (\overline{a_L} \gamma_{\mu} a_L^{\epsilon p}) \sqrt{2} W^{+\mu} + \sqrt{2} W_{\mu} (\overline{a_L^{\epsilon p}} \gamma^{\mu} a_L) \}$
- $\frac{g}{2} \{ (\overline{a_L} \gamma_{\mu} a_L) W^{3\mu} - W^{3\mu} (\overline{a_L^{\epsilon p}} \gamma_{\mu} a_L^{\epsilon p}) \}$

$$
= \overline{a_{L}}\gamma^{\mu}i\partial_{\mu}a_{L} + \overline{a_{L}^{cp}}\gamma^{\mu}i\partial_{\mu}a_{L}^{cp}
$$

\n
$$
- \frac{g}{2} \left\{ \overline{a_{L}}\gamma^{\mu}(a_{L}W_{\mu}^{3} + a_{L}^{cp}\sqrt{2}W_{\mu}^{+}) + \overline{a_{L}^{cp}}\gamma^{\mu}(a_{L}\sqrt{2}W_{\mu}^{-} - a_{L}^{cp}W_{\mu}^{3}) \right\}
$$

\n
$$
= \overline{a_{L}}\gamma^{\mu}i\partial_{\mu}a_{L} + \overline{a_{L}^{cp}}\gamma^{\mu}i\partial_{\mu}a_{L}^{cp}
$$

\n
$$
- \frac{g}{2} \left(\overline{a_{L}} \overline{a_{L}^{cp}}\right)\gamma^{\mu} \left(\frac{W_{\mu}^{3}}{\sqrt{2}W_{\mu}^{-}} - \frac{\sqrt{2}W_{\mu}^{+}}{W_{\mu}^{3}} \right) \left(\frac{a_{L}}{a_{L}^{cp}} \right)
$$

\n(28)

Here we put $W_{\mu}^{\pm} = (1/\sqrt{2})(W_{\mu}^1 \mp iW_{\mu}^2)$ and $\chi = (a_L a_L^{cp})^T$. Finally, we obtain

$$
L_{A-M} = \overline{\chi}\gamma^{\mu}\left(i\partial_{\mu} - \frac{g}{2}\boldsymbol{\tau}\cdot\mathbf{W}_{\mu}\right)\chi\tag{29}
$$

Equation (29) is quite the same as equation (2). Therefore, equation (29) satisfies the $SU(2)$ gauge symmetry.

From equations (23) – (25) , we considered that the electroweak gauge bosons are composite fields of preons and antipreons. Then we showed that the electroweak interaction Lagrangian (29) satisfying the $SU(2)$ gauge symmetry is derived from the fundamental Lagrangian (9) describing only the preon and antipreon fields. This shows the validity of the composite model of the gauge bosons.

4. CONCLUSIONS

We have considered the fundamental Lagrangian describing the preon and antipreon fields. Furthermore, we have considered a composite model of electroweak gauge bosons using the auxiliary field method. We concluded that the auxiliary vector fields representing the preon fields ϕ_{μ} , ϕ_{μ}^{\dagger} , and ϕ_{μ} correspond to the electroweak gauge bosons W_{μ}^{+} , W_{μ}^{-} , and W_{μ}^{3} , respectively.

From the interaction Lagrangian for the gauge bosons and the preons, we obtain the electroweak interaction Lagrangian which is invariant under the $SU(2)$ gauge transformation. This shows the validity of the composite model of the gauge bosons constructed by the preon and antipreon.

REFERENCES

- Okamoto, Y., Sugita, K., and Sekine, M. (1992a). *International Journal of Theoretical Physics,* 31, 59.
- Okamoto, Y., Sugita, K., and Sekine, M. (1992b). *International Journal of Theoretical Physics,* 31, 2043.

Okamoto, Y., Sugita, K., and Sekine, M. (1995). *Nuovo Cimento,* 108A, 1153.

1316 Sugita, Okamoto, and Sekine

- Sugita, K., Okamoto, Y., and Sekine, M. (1991). *International Journal of Theoretical Physics,* 30, 1079.
- Sugita, K., Okamoto, Y., and Sekine, M. (1992a). *International Journal of Theoretical Physics,* 31, 521.
- Sugita, K., Okamoto, Y., and Sekine, M. (1992b). *Nuovo Cimento,* 105A, 1051.
- Sugita, K., Okamoto, Y., and Sekine, M. (1994a). *Nuovo Cimento,* 107A, 1793.
- Sugita, K., Okamoto, Y., and Sekine, M. (1994b). *Nuovo Cimento,* 107A, 2875.